Statistical methods for updating metaanalyses

Mark Simmonds

Centre for Reviews and Dissemination University of York, UK

With: Julian Elliott, Joanne McKenzie, Georgia Salanti, Adriani Nikolakopoulou, Julian Higgins

THE UNIVERSITY of York Centre for Reviews and Dissemination

Updating meta-analyses

- When should we update a meta-analysis in an LSR?
 - As soon as new studies emerge?
 - When new data might alter our conclusions?

Updating is time-consuming

Some issues

- Conclusions can change over time
 Risk of error if we stop too soon
- Are the results robust?
- When should the next update happen?
- When can we stop updating?

Cumulative MA : Type I error

Centre for Reviews and Dissemination

Centre for Reviews and Dissemination

Controlling error

- Control Type I and Type II error
 - Sequential Meta-Analysis
 - Trial Sequential Analysis
- Control Type I error
 - Law of Iterated Logarithm
 - "Shuster-Pocock" method
- Other methods
 - Fully Bayesian analysis
 - Robustness or stability of analysis
 - Consequences of adding new studies
 - Power gains from adding new studies

(SMA, Higgins et al) (TSA, Copenhagen group)

(LIL, Hu et al) (Shuster)

Example cumulative meta-analysis

Study	Mean difference	MD	95%-CI	
Adding 1 (k=1) Adding 2 (k=2) Adding 3 (k=3)		2.80 7.38 2.12	[-2.58; 8.18] [-8.21; 22.98] [-6.29; 10.52]	
Adding 4 (k=4) Adding 5 (k=5) Adding 6 (k=6) Adding 7 (k=7)		1.94 2.91 2.21 2.65	[-4.16; 8.04] [-1.13; 6.95] [-1.33; 5.74] [-0.72; 6.02]	
Adding 9 (k=9)		4.09	[0.86; 7.32]	
Adding 10 (k=10) Adding 11 (k=11) Adding 12 (k=12) Adding 13 (k=13) Adding 14 (k=14) Adding 15 (k=15) Adding 16 (k=16) Adding 17 (k=17) Adding 18 (k=18) Adding 19 (k=19) Adding 20 (k=20) Adding 21 (k=21)		3.29 2.89 3.58 4.27 3.84 3.18 2.75 2.28 1.88 3.95 3.82 4.36	[0.28; 6.30] [0.07; 5.72] [1.85; 5.31] [2.72; 5.82] [2.06; 5.62] [1.28; 5.08] [0.91; 4.60] [0.91; 4.60] [0.46; 4.11] [-0.04; 3.80] [1.16; 6.73] [1.09; 6.56] [1.31; 7.41]	
Adding 22 (k=22) Adding 23 (k=23) Adding 24 (k=24) Adding 25 (k=25)		4.51 4.52 4.74 4.83	[1.79; 7.22] [1.88; 7.15] [2.13; 7.35] [2.24; 7.41]	
Random effects model	0 -10 0 10 20	4.83	[2.24; 7.41]	

Centre for Reviews and Dissemination

THE UNIVERSITY of York

 $I^2 = 95\%$

Sequential meta-analysis (SMA) Higgins, Simmonds, Whitehead 2010

- Calculate cumulative Z score and cumulative Information for each updated meta-analysis
- Stop when a pre-specified boundary is crossed
 Boundary designed to control type I and II error
- Optional Bayesian estimation of heterogeneity

 Avoid mis-estimation of heterogeneity with few trials

Sequential meta-analysis

Centre for Reviews and Dissemination

Trial sequential analysis (TSA)

Wetterslev, Thorlund, Brok, Gluud 2008

- Calculate required sample size for the metaanalysis
- Calculate alpha-spending boundaries
- Stop if Z score exceeds the boundary
- Or if sample size is reached
- Sample size must be adjusted for heterogeneity

Example

Law of Iterated Logarithm (LIL)

Lan, Hu, Cappelleri 2007

Uses an adjusted Z statistic

•
$$Z^* = \frac{Z}{\sqrt{2}\log(\log(N))}$$

- This is bounded as $N \to \infty$
- So controls Type I error

Shuster-Pocock method

Shuster, Neu 2013

Compares the Z statistic to a t distribution

 Parameters of t distribution are based on Pocock's group sequential boundaries

 Must specify number of meta-analyses performed

Simulation study

- Simulated meta-analyses varying:
 - True treatment effect: 0 or 0.1
 - Number of studies:
 - Heterogeneity: I² 0 to 90%

Fixed total sample size of 9000
 90% power to detect effect of 0.1 if I² = 50%

5 to 50

Methods applied

- Naïve analysis (standard cumulative MA)
- Trial Sequential Analysis (TSA)
- Sequential Meta-Analysis (SMA)
 - No prior heterogeneity
 - Prior I² of 50% or 90%
- Law of Iterated Logarithm (LIL)
- Shuster method

False positive rates – Type I error

• 20 trials / updates, $I^2 = 25\%$

Centre for Reviews and Dissemination

Centre for Reviews and Dissemination

Cumulative power

• 20 trials / updates, $I^2 = 25\%$

Centre for Reviews and Dissemination

76 Cochrane Reviews

- 76 Reviews: 286 meta-analyses
 - 68% binary data
 - Median 9 trials (IQR 6 to 14)

 62% had a statistically significant result using conventional analysis

Sample size

Effect size	% of meta-analyses with power of at least:		
(5% Type I error)	80%	90%	
As observed	43.5%	38.6%	
1	71.6%	67.0%	
0.5	43.9%	36.2%	
0.25	23.5%	20.4%	

- Most reviews are underpowered
- Waiting for required sample size is not realistic

Conclusions of analyses

Centre for Reviews and Dissemination

Conventional "Naïve" analysis

- Too many inappropriate positive conclusions
 - Elevated Type I error rate
 - But not vastly elevated for most real updated reviews?
- Many analyses showing significant results are based on too little evidence

Do we need sequential methods?

 Is the problem with "naïve" analysis serious enough in real Cochrane reviews?

• Or in Living Systematic Reviews?

 Do the methods needlessly delay a statistically significant result?

When should they be implemented?

- At protocol stage in all reviews?
- At first update?
- Only once a statistically significant result is found?
- Only when evidence is limited?
 E.g. small total sample size

